Includes bibliographical references (p. 93-95) and index.
CONTENTS NOTE
Text of Note
Chapter 1. Image stabilization. 1.1. Introduction -- 1.2. Wavefronts -- 1.3. Wavefronts and optical systems -- 1.4. Beam wander -- 1.5. Image jitter -- 1.6. Beam wander vs. image jitter.
Text of Note
Chapter 2. Effects of turbulence on a wavefront. 2.1. Introduction -- 2.2. Effect of the atmosphere -- 2.3. Description of a wavefront -- 2.4. Angle of arrival fluctuations -- 2.5. Higher-order modes -- 2.6. Global tip and tilt -- 2.7. Effect of the atmosphere on intensity at a receiver.
Chapter 4. Low-order wavefront compensation. 4.1. Introduction -- 4.2. Wavefront compensation -- 4.3. Wavefront correctors for piston, tip and tilt -- 4.4. Use of tip-tilt correction with laser guide stars -- 4.5. Mechanical operation of tip-tilt stages.
Text of Note
Chapter 5. Image-Stabilization Systems Simplified. 5.1. Introduction -- 5.2. Integrating sensor and compensator -- 5.3. System control -- 5.4. Model image stabilizer -- 5.5. Information flow for image stabilization -- 5.6. Types of controllers.
Chapter 7. Image-Stabilization Systems. 7.1. Introduction -- 7.2. Astronomical imaging tip-tilt systems -- 7.3. Programs using image stabilization -- 7.4. Beam steering for interferometers -- 7.5. Stabilized long-baseline interferometers.
Text of Note
Chapter 8. Alternative approaches. 8.1. Introduction -- 8.2. Liquid crystal spatial light modulators -- 8.3. Orthogonal transfer charge coupled devices -- 8.4. Micro-electro-mechanical systems -- Bibliography -- Index.
0
8
8
8
8
8
8
8
SUMMARY OR ABSTRACT
Text of Note
The use of image stabilization has grown to the point that it is now a common component of modern optical systems for imaging, communications, and remote-sensing applications. The benefits of image stabilization to astronomical research alone are so rich that it is common for astronomical telescopes, built over the last century, to be retrofitted with fast steering mirrors and tip-tilt sensors to extend their useful lifetimes. This text provides the basics of image stabilization starting with a consideration of the cause of image blurring and an introduction to the components commonly used in constructing a stabilized imaging system. With this foundation, an example image stabilized system is described and used to introduce some of the important parameters in evaluating the performance of image stabilization systems. As image stabilization systems are key components of adaptive optics systems, the more sophisticated sensing and correction devices used in this area are briefly addressed. Rather than being a mathematical, rigorous treatment of image stabilization, it provides the basic ideas in an easy-to-read format.
OTHER EDITION IN ANOTHER MEDIUM
International Standard Book Number
0819464341
PARALLEL TITLE PROPER
Parallel Title
Image stabilization
TOPICAL NAME USED AS SUBJECT
Fiber optics.
Image stabilization.
Optical instruments.
PERSONAL NAME - PRIMARY RESPONSIBILITY
Teare, Scott W.
PERSONAL NAME - ALTERNATIVE RESPONSIBILITY
Restaino, Sergio R.
CORPORATE BODY NAME - ALTERNATIVE RESPONSIBILITY
Society of Photo-optical Instrumentation Engineers.