Dale Husemöller ; with appendices by Stefan Theisen, Otto Forster, and Ruth Lawrence
وضعیت ویراست
وضعيت ويراست
Second edition
مشخصات ظاهری
نام خاص و کميت اثر
xxi, 487 pages :
ساير جزييات
illustrations ;
ابعاد
25 cm
فروست
عنوان فروست
Graduate texts in mathematics ;
مشخصه جلد
111
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references (pages 465-478) and index
یادداشتهای مربوط به مندرجات
متن يادداشت
Introduction to rational points on plane curves -- Elementary properties of chord-tangent group law on a cubic curve -- Plane algebraic curves -- Elliptic curves and their isomorphisms -- Families of elliptic curves and geometric properties of Torsion points -- Reduction mod p and torsion points -- Proof of Mordell's finite generation theorem -- Galois cohomology and isomorphism classification of elliptic curves over arbitrary fields -- Descent and Galois cohomology -- Elliptic and hypergeometric functions -- Theta functions -- Modular functions -- Endomorphisms of elliptic curves -- Elliptic curves over finite fields -- Elliptic curves over local fields -- Elliptic curves over global fields and ℓ-adic representations -- L-function of an elliptic curve and its analytic continuation -- Remarks on the Birch and Swinnerton-Dyer conjecture -- Remarks on the modular elliptic curves conjecture and Fermat's last theorem -- Higher dimensional analogs of elliptic curves: Calabi-Yau varieties -- Families of elliptic curves -- Appendix I: Calabi-Yau manifolds and string theory -- Appendix II: Elliptic curves in algorithmic number theory and cryptography -- Appendix III: Elliptic curves and topological modular forms -- Appendix IV: Guide to the exercises
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book is an introduction to the theory of elliptic curves, ranging from elementary topics to current research. The first chapters, which grew out of Tate's Haverford Lectures, cover the arithmetic theory of elliptic curves over the field of rational numbers. This theory is then recast into the powerful and more general language of Galois cohomology and descent theory. An analytic section of the book includes such topics as elliptic functions, theta functions, and modular functions. Next, the book discusses the theory of elliptic curves over finite and local fields and provides a survey of results in the global arithmetic theory, especially those related to the conjecture of Birch and Swinnerton-Dyer. This new edition contains three new chapters. The first is an outline of Wiles's proof of Fermat's Last Theorem. The two additional chapters concern higher-dimensional analogues of elliptic curves, including K3 surfaces and Calabi-Yau manifolds. Two new appendices explore recent applications of elliptic curves and their generalizations. The first, written by Stefan Theisen, examines the role of Calabi-Yau manifolds and elliptic curves in string theory, while the second, by Otto Forster, discusses the use of elliptic curves in computing theory and coding theory. About the First Edition: "All in all the book is well written, and can serve as basis for a student seminar on the subject."--G. Faltings, Zentralblatt
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Curves, Algebraic
موضوع مستند نشده
Curves, Elliptic
موضوع مستند نشده
Group schemes (Mathematics)
موضوع مستند نشده
Courbes algébriques
موضوع مستند نشده
Courbes elliptiques
موضوع مستند نشده
Schémas en groupes - Mathématiques
مقوله موضوعی
موضوع مستند نشده
QA
رده بندی ديویی
شماره
516
.
3/52
ويراست
21
رده بندی کنگره
شماره رده
QA567
نشانه اثر
.
H897
2004
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )