یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references (pages 131-132) and index
یادداشتهای مربوط به مندرجات
متن يادداشت
Physics and Fourier transforms -- Useful properties and theorems -- Applications 1: Fraunhofer diffraction -- Applications 2: signal analysis and communication theory -- Applications 3: spectroscopy and spectral line shapes -- Two-dimensional Fourier transforms -- Multi-dimensional Fourier transforms -- The formal complex Fourier transform
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science. -- Publisher description
عنوان اصلی به زبان دیگر
عنوان اصلي به زبان ديگر
Fourier transforms
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Engineering mathematics
موضوع مستند نشده
Fourier transformations
موضوع مستند نشده
Mathematical physics
رده بندی ديویی
شماره
515/
.
723
ويراست
21
رده بندی کنگره
شماره رده
QC20
.
7
.
F67
نشانه اثر
J36
2002
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )