Intro; Table of Contents; About the Author; About the Technical Reviewer; Introduction; Chapter 1: Getting Started; Installing Python; Editor and IDEs; Differences between Python2 and Python3; Work Directory; Using a Terminal; Summary; Chapter 2: Introductory Notes; Objects in Python; Reserved Terms for the System; Entering Comments in the Code; Types of Data; File Format; Operators; Mathematical Operators; Comparison and Membership Operators; Bitwise Operators; Assignment Operators; Operator Order; Indentation; Quotation Marks; Summary; Chapter 3: Basic Objects and Structures; Numbers
متن يادداشت
Chapter 6: Other Basic ConceptsObject-oriented Programming; More on Objects; Classes; Inheritance; Modules; Methods; List Comprehension; Regular Expressions; User Input; Errors and Exceptions; Summary; Chapter 7: Importing Files; .csv Format; From the Web; In JSON; Other Formats; Summary; Chapter 8: pandas; Libraries for Data Mining; pandas; pandas: Series; pandas: Data Frames; pandas: Importing and Exporting Data; pandas: Data Manipulation; pandas: Missing Values; pandas: Merging Two Datasets; pandas: Basic Statistics; Summary; Chapter 9: SciPy and NumPy; SciPy; NumPy
متن يادداشت
Container ObjectsTuples; Lists; Dictionaries; Sets; Strings; Files; Immutability; Converting Formats; Summary; Chapter 4: Functions; Some words about functions in Python; Some Predefined Built-in Functions; Obtain Function Information; Create Your Own Functions; Save and run Your Own Modules and Files; Summary; Chapter 5: Conditional Instructions and Writing Functions; Conditional Instructions; if; if + else; elif; Loops; for; while; continue and break; Extend Functions with Conditional Instructions; map() and filter() Functions; The lambda Function; Scope; Summary
متن يادداشت
NumPy: Generating Random Numbers and SeedsSummary; Chapter 10: Matplotlib; Basic Plots; Pie Charts; Other Plots and Charts; Saving Plots and Charts; Selecting Plot and Chart Styles; More on Histograms; Summary; Chapter 11: Scikit-learn; What Is Machine Learning?; Import Datasets Included in Scikit-learn; Creation of Training and Testing Datasets; Preprocessing; Regression; K-Nearest Neighbors; Cross-validation; Support Vector Machine; Decision Trees; KMeans; Managing Dates; Data Sources; Index
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them. The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9781484241134
ویراست دیگر از اثر در قالب دیگر رسانه
شماره استاندارد بين المللي کتاب و موسيقي
9781484241127
شماره استاندارد بين المللي کتاب و موسيقي
9781484241141
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Data mining.
موضوع مستند نشده
Python (Computer program language)
موضوع مستند نشده
COMPUTERS-- General.
موضوع مستند نشده
Data mining.
موضوع مستند نشده
Python (Computer program language)
مقوله موضوعی
موضوع مستند نشده
COM-- 000000
موضوع مستند نشده
UMX
موضوع مستند نشده
UMX
رده بندی ديویی
شماره
006
.
3/12
ويراست
23
رده بندی کنگره
شماره رده
QA76
.
9
.
D343
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )